IEA TASK WS2

Evolution of Gas Cleaning

25 October 2004 Copenhagen, Denmark

Kari Salo Carbona Inc. Kaupintie 11 A, FIN-00440 Helsinki, Finland tel. +358-9-5407150, fax +358-9-54071540 carbona@carbona.fi

CARBONA BACKGROUND

page 1 /2

1978 – 1984 Technical Research Centre of Finland (VTT)

- Bubbling fluidized bed small gasifiers
- Gas wet scrubbing / filtering development
- Down draft gasifier with engine (40 kW)
- Kemira ammonia plant with 200 MWth HTW gasifier
- Updraft gasifier development

1985 – 1989 Bioneer and Ahlstrom/Pyroflow (now FW)

- Commercialization of Bioneer updraft gasifiers
- Tar decomposition testing with thermal treatment
- CFB gasifiers for PP (Pyroflow)

Conclusion: Tar is Tar

CARBONA BACKGROUND

page 2 /2

1989 - 1995 Tampella Power / Enviropower

- Licenses for U-gas and Renugas from GTI (former IGT)
- 20 MWth pressurized pilot operation
- Hot gas cleanup and catalysts in slip stream
- Alkali, ammonia, HCl, heavy metals measurements

1996 - > Carbona

- IGCC-development continues
- BGGE possible with new catalysts
- Cooperation with VTT and Condens
- Reforming, filtering, scrubbing
- Skive project

Conclusion: Tar can be handled with catalysts

GASIFIER TYPES AND CLEANUP

Gasifiers

- downdraft
- updraft
- fluidized bed

Gas cleanup

- none
- filtering hot or cold gas
- scrubbing tar handling
- tar reforming filtering scrubbing

EXPERIENCE ON GAS CLEANUP IN SMALL SCALE

- Mainly bad experience
- Tar the main problem

TAR

Light tar

Benzene - Pyrene

78 g/mol - 202 g /mol

Heavy tar

Heavier than fluoranthene > 202 g/mol

Condensing > 150°C

TYPICAL TAR CONTENTS

Wood Gasification

Source: VTT

TAR-COMPOSITION: FLUIDIZED BED GASIFIER

Treatment conditions and		Wheat,	Pine	Peat	Peat	Brown	Polish
component		straw	sawdust	Α	В	coal	coal
Temperature, °C		850	940	930	940	910	1 000
Residence time in freeboard, s		5	4	5	4	4	5
Pressure, MPa		0.5	0.5	0.5	0.5	0.5	0.5
Benzene and its							
derivatives							
Benzene	C ₆ H ₆	9 876	7 059	1 699	1 989	962	364
Toluene	C ₇ H ₈	1 275	134	17	15	6	-
Styrene	C ₈ H ₁₀	578	113	3	6	-	-
m- and p-Xylene	C ₉ H ₁₀	68	1	-	-	1	-
4-Methylstyrene	C ₉ H ₁₀	114	4	1	-	-	-
Polycyclic hydrocarbons							
Indene	C ₉ H ₈	602	141	7	1-1	-	-
Naphthalene	$C_{10}H_{8}$	3 300	1 866	246	212	29	57
2-Methylnaphthalene	$C_{11}H_{10}$	192	27	2	2	1	-
1-Methylnaphthalene	$C_{11}H_{10}$	113	14	1	1	-	-
Acenaphthylene	C ₁₂ H ₈	975	647	20	15	-	-
Biphenyl	$C_{12}H_{10}$	178	52	4	3	-	-
Acenaphthene	$C_{12}H_{12}$	50	30	24	9	-	-
Fluorene	$C_{13}H_{10}$	209	55	5	3	-	-
Phenanthrene	C ₁₄ H ₁₀	687	446	38	19	-	-
Anthracene	C ₁₄ H ₁₀	194	61	5	2	-	6
Fluoranthene	$C_{16}H_{10}$	275	296	25	1	-	-
Pyrene	$C_{16}H_{10}$	330	307	27	-	1	- 1
Hydrocarbons with							
heteroatoms					i		
Pyridine	C ₅ H ₅ N	169	4	88	28	1	-
Phenol	C ₆ H ₆ O	159	13	1	1	-	-
Isoquinolene	C ₉ H ₇ N	21	-	1	1	-	-
Quinazoline	$C_8H_6N_2$	-	4	3	-	-	-
Dibenzofurane	C ₁₂ H ₈ O	91	78	7	4	-	-
Total concentration		19 456	11 352	2 224	2 3 1 1	1 001	427
mg/m3n							

Source: VTT

GAS BOILER AND BURNER

REFORMER

Catalyst

Source: VTT

REFORMER Performance

		GAS FROM	GAS FROM
		GASIFIER	REFORMER
Temperature	°C	850	835
Mass flow	kg/s	1,087	1,151
CO	%-vol	17,17	19,13
CO2	%-vol	12,17	10,47
H2	%-vol	15,18	18,52
H2O	%-vol	12,41	11,52
CH4	%-vol	3,35	0,82
C2H4	%-vol	0,04	0,00
C3H8	%-vol	0,00	0,00
C6H6	%-vol	0,11	0,00
N2	%-vol	39,50	39,52
H2S	ppmv	75	68
NH3	ppmv	574	42
HCI	ppmv	59	54
TOTAL	%-vol	100,0	100,0
LHV	kJ/kg	4769	4473

TAR REFORMER

Performance

CONTAMINANTS IN BIOMASS FUEL

Contaminants originating from the fuel

	Woody biomass	Agricultural biomass	Other waste
Typical biomass fuel	Wood chips, forest residue, paper mill waste	Willow, straw, alfalfa	Sewage sludge, RDF
Ash content	1-5%w	4-11%w	10-45%w
Sulfur content	<0.1%w	0.1-0.3%w	0.1-1%w
Nitrogen content	0.4-07%w	0.5-3.0%w	0.5-6%w
Chlorine content	<0.1%w	0.1-0.25%w	0.1-1%w
Alkalines (Na+K)	0.05-0.4 %w	0.3-3%w	n/a

PRODUCT GAS CONTAMINANTS

Typical contaminants in product gas:

- nitrogen gases (NH₃, HCN)
- sulfur gases (H₂S, COS)
- other gases (HCI)
- vapor phase alkali metals (Na, K)
- vapor phase trace elements
- dust

NITROGEN COMPOUNDS

- Fuel nitrogen forms ammonia (NH₃) and hydrogen cyanide (HCN).
- NH₃ and HCN burn to NOx in the power generating equipment and are emitted with the flue gas.
- The higher the fuel bound nitrogen, the higher product gas NH₃ (between 1000 and 30000 ppm).
- Fuel bound nitrogen to ammonia conversion between 40-85%.
- Formation of ammonia can not be controlled in the gasifier.
- NH₃ and HCN are not harmful for power generation equipment.
- Removed in catalyst and wet scrubber.

CHLORINE COMPOUNDS

- Chlorine in fuel forms HCl in the gasification process.
- Typical HCl content in biomass derived gas is 20 500 ppmv.
- HCI can pass the power generating equipment and are emitted with the flue gas.
- HCl can cause corrosion in power generation equipment.
- HCl forms chlorides with calcium based gasifier bed material and alkalis.
- Vapor phase chlorides can condense in power generation equipment after oxidation.
- Chlorides are mainly removed with the filter ash and in scrubber.

ALKALI METALS

- Alkali metals (Na and K) in fuel mainly stay in gasifier and filter ash.
- A small portion volatilize (below 1 ppmw in the product gas).
- Volatile alkalis form chlorides, hydroxides and sulfides.
- Alkali compounds are removed in the filter and scrubber.

TRACE ELEMENTS

- Vapor phase trace elements are mainly:
 As, Cd, Co, Cu, Cr, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Zn, V
- Vapor phase trace elements are emitted with the flue gas (Cd, Hg) and may contaminate catalysts (As)
- Removal occurs in filter when vapor phase trace elements condense on particle surface or in wet scrubber

TRACE ELEMENT CONTENT OF PRODUCT GAS AFTER CERAMIC FILTER UNIT (µg/m³n)

Hg	BDL
Cd	0.7-2.0
Pb	2.3-2.4
Se	BDL
Sb	BDL
Co	BDL
Mn	NA
Ве	BDL
As	BDL
Cr	NA
Ni	NA

BDL = Below Detection

Limit

NA = Not Analyzed

REQUIREMENTS FOR GAS ENGINE FUEL

Temperature	< 40	°C
Pressure	> 150	mbar(g)
Relative moisture content	< 80	%
Particulate content	< 50	mg / 10 kWh
Sulfur content	< 2000	mgH ₂ S / 10 kWh
Halogen content	< 100-400	mg/10 kWh
Ammonia content	< 55	$mgNH_3 / 10 kWh$
Oil (tar) content	< 5	mg / 10 kWh

SKIVE PROJECT, DENMARK

INTERNATIONAL FUNDING COOPERATION

SKIVE PROCESS DESIGN BASIS

Plant Configuration:

- low pressure fluidized bed gasifier
- tar cracking
- gas cooling and scrubbing
- gas engines
- district heating system

♦ Plant Capacity:

- biomass feed 110 tpd
- power generation max. 5.4 MW
- 11.5 MW district heat, supply at 94/50 °C

◆ <u>Fuel:</u>

wood pellets (20.2 MJ/kg HHV d.b.)
 of 9.5 % moisture content

♦ General:

- annual operation 8000 hours
- technical life time 15 years

Plant Efficiency:

- electrical efficiency 28 % (LHV)
- overall efficiency 87 % (LHV)

WOOD PELLETS HANDLING

SKIVE BGGE - BUILDING

SKIVE - PROJECT STATUS

- DOE NREL subsidy enabled the project start.
- ◆ EU has accepted to move the project from the former site, Lemvig, to Skive and to change project coordinator and participants. Coordinator is Carbona, partners Skive and GE Jenbacher.
- Danish Energy Agency has also granted a subsidy
- Skive has obtained most approvals from owners and City Council for plant construction & investment.
- Skive, as the main contractor has signed the main contracts.
- Basic engineering and substantial part of detailed engineering has been done by for the entire plant. Construction started 25.10.2004
- Skive BGGE plant starts operation by the end of 2005.

CONCLUSION ON GAS CLEANUP

- Gas cleanup is still a challenge
- In small scale makes the process complicated and expensive
- to meet "the power plant" standards tar must be reformed

You do not want to see or smell tar

