Butane model operating at 320 F and 58.35 PSI pressures

 

 

Superheated/expanded to 100 psi

Temp (F)

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal

Energy (BTU/lbm)

Enthalpy (BTU/

lbm)

Entropy (BTU/

lbm*R)

Cv (BTU/

lbm*R)

Cp (BTU/

lbm*R)

320.00

100.00

0.73909

1.3530

357.35

382.42

0.72037

0.51736

0.56287

                                                                                        Minus          125.49

                                                     Total Heat energy invested          256.93

 

Saturated Vapor at 100 F

Temp(F)

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal

Energy (BTU/lbm)

Enthalpy (BTU/lbm)

Entropy (BTU

/lbm*R)

Cv (BTU/

lbm*R)

Cp (BTU/

lbm*R)

100.00

51.675

0.55503

1.8017

257.91

275.16

0.58078

0.39689

0.45206

Press Diff =58.325 psi                                                    Minus          125.49

                                                                 Latent heat of fusion          149.67

                                

Liquid – condenser side – 100 F

Temp(F)

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal

Energy (BTU/lbm)

Enthalpy (BTU/lbm)

Entropy (BTU/

lbm*R)

Cv (BTU/

lbm*R)

Cp (BTU/

lbm*R)

100.00

51.675

34.799

0.028736

125.22

125.49

0.31355

0.42655

0.60381

 

 

Total Heat Energy invested                      =  256.93

Minus Latent Heat of fusion  losses         =  149.67

Recoverable mechanical Energy              =  107.26

 

Maximum theoretical thermal efficiency  =  41.7%

(149.67/256.93)

 

 

 

 

 

Steam Modeling at 320 F and pressure drop of 59.05 psi

between inlet and condenser

 

Superheated/expanded to 60 psi

Temp (F)

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal

Energy (BTU/lbm)

Enthalpy (BTU/

lbm)

Entropy (BTU/

lbm*R)

Cv (BTU/

lbm*R)

Cp (BTU/

lbm*R)

320.00

60

 

7.5

 

1181.6

 

 

 

                                                                                             Minus          67.97

                                                                    Total energy invested      1113.63

 

 

Saturated Vapor at 100 F           Atmospheric at sea level = 14.696 PSI

Temp(F)

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal

Energy (BTU/lbm)

Enthalpy (BTU/lbm)

Entropy (BTU

/lbm*R)

Cv (BTU/

lbm*R)

Cp (BTU/

lbm*R)

100.00

0.9492

 

350.4

 

1105.2

 

 

 

Press Diff = -59.05 psi                                                    Minus              67.97

                                                                  Latent heat of fusion         1037.23

 

 

 

Liquid – condenser side – 100 F

Temp(F)

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal

Energy (BTU/lbm)

Enthalpy (BTU/lbm)

Entropy (BTU/

lbm*R)

Cv (BTU/

lbm*R)

Cp (BTU/

lbm*R)

100.00

0.9492

62

0.01613

 

67.97

 

 

 

 

Total Heat Energy invested                      =  1113.63

Minus Latent Heat of fusion  losses         =  1037.23

Recoverable mechanical Energy              =     76.4

 

Maximum theoretical thermal efficiency  =  6.86%

(76.4/1113.63)

 

 

Why Steam only works (efficiently) with 800 F and plus superheat!!

 

 

Then:

 

Superheated/expanded to 60 psi

Temp (F)

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal

Energy (BTU/lbm)

Enthalpy (BTU/

lbm)

Entropy (BTU/

lbm*R)

Cv (BTU/

lbm*R)

Cp (BTU/

lbm*R)

320.00

60

 

12.5

 

1430.5

 

 

 

                                                                                             Minus          67.97

                                                                    Total energy invested     1362.30

 

Total Heat Energy invested                      =  1430.50

Minus Latent Heat of fusion  losses         =  1037.23

Recoverable mechanical Energy              =    393.27

 

Maximum theoretical thermal efficiency  =  35.3%

(393.27/1113.63)